
UNCLASSIFIED

AD 268 -1 89

ARMED SERVICES TECHNICAL INFORMAIO AGENCY
ARLINGTON HALL STATION
ARLING ON 12, VIRGINIA

UNCLASSIFIED



NOTICR: Iken governent or other dravingss spec-
fications or other data are used for any purpose
other than in connection vith a definitely related
govenmnt prouz.nt operation, the U. S.
Government thereby incurs no responsibility, nor any
obligstion whatsoever; and the fact that the Govern-
ment my have formilateds, furnished, or in any way
supplied the sid drawings, specificationss or other
data is not to be rerded by implication or other-
vise as in any maner licensing the holder or my
other person or corporation, or conveying ay rL~hts
or permission to sture, use or sell ay
patented invention that msy in ny ey be related
thereto.



UNIVERSITY OF WISCONSIN

THEORETICAL CHEMISTRY LABORATORY

MADISON, WISCONSIN

GROUND STATE POTENTIAL 3I33G0

OF DIATOKIC MOLECULES

Author:
Ernest t. Davidson

0-1005 Series 3

17 November 1961

Naval Bureau Ordnance

NOrd - 15884



GROUND STATE POTENTIAL ENERGY OF DIATOMIC MOIZCULES

by
**

Ernest R. Davidson

University of Wisconsin Theoretical Chemistry Laboratory
Madison, Wisconsin

ABSTRACT

The restrictions placed on the ground state potential energy of

a diatomic molecule by the inequality d 2(R2)/dR2,0 are discussed.

This leads to rather weak smoothness conditions on S(1).

This work was supported in part by Contract NOrd 15884 with the
Naval Bureau Ordnance.

National Science Foundation Post-Doctoral Fellow.

S
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Ernest R. Davidson

University of Wisconsin Theoretical Chemistry Laboratory
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Introduction

Strictly speaking, a potential function for a molecule is purely

a theoretical intermediate in the approximate calculation of the

energy levels and not an experimental observable. There would seem

to be little reason, then, to speak of an "experimental" potential

function. On the other hand, it is impractical, if not impossible, to

compute with spectroscopic accuracy the theoretical potential functions

for all molecules of physical interest. Thus it is not surprising that

numerous methods have been developed for estimating the potential

function from experimental data. A good summary of these methods may

be found in the review article by Varshni.
1

As no two of these methods yield the same potential function, it

is of some interest to know as much as possible about the theoretical

potential function itself. Again, Varshni has summarized several

basic conditions on the exact potential function. There are, however,

probably a wide variety of theorems which can be proven concerning

theoretical potential functions. Most of the theorems presented in

this paper take the form of inequalities which place rather weak

restrictions on the potential function.

Discussion

If H e(R) denotes a set of electronic Hamiltonians labeled by

the parameter R and E (R) denotes the corresponding energy, then in

atomic units,
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H - T + V (la)e e e

N2

where Te = -V (lb)
ei

i-i1

V z. + Zb + 1 G

rai rbi r ij
i i>J

and H e q Be (1d)

The potential function R(R) is then given by

E(R) - Ee (R) + zazb/R . (le)

From the fact that T and V are homogeneous functions of thee e

unit of length, it follows that 'T / R - -2T e/R andV e/aR - -V e/R
e2

This yields the well known equations

R)He/-R - -2T e - Ve  (2a)

-T - RIHe/ R + He " (RHe)/ R (2b)

Ve = RHe/ZR +. 2HeR '(R 2H )/ R. (2c)

Another relationship which is not so well known, can be found from

R2 ?2 H /-R 2 a 6T + 2V

by substituting for T and V to obtaine e

R2 2He R2 +-4R He/ R 42H - 0 (3)
e e e

a
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If the symbol 1EeR> is used to denote an eigenstate of He (R),

then Ee0 () - (Z e°R I He1 EeR> where 3e is the lowest eigen-

value of H e  Since H (R) has no singularities in R, it may bee e

expanded in the form

222 3
H(R) - H (R) + (Rl-R) - He(R)I a + 1(R -R) -a He(R) R +O(R -R)

By perturbation theory it follows at once that,
6

lim Ee°(R) = 3e (R) (5a)
R - R

lim dE° (R )/dR z dEe 0 (R)/dR E OR I a He E HiR OeR (5b)
e -4-1 e e e e e'

lim d2 e0 (R1)/Ida
2  d2Ee (R)/dR2.-<Ee°R 1'2 H/R 2 E R,°-O> 21' 2 f(R)

Rf-PR (5c)

where f(R) - R2 5 /<Ee 0 R - He 'R I EeR>/ 2
o E - o(

E>E e e
e e

The formula for f(R) can be simplified by equation (2a) to

K______ BeO/<lBeR1'S K 0 R I V elBe~ a~2
£e) > <e°  ele eE-e .(6b)

-e e

Since the coordinate transformations which commute with H also
e

commute with V and T separately, it follows that the sum overe e

2e > Re0  really only extends over states of the same symmetry as the

ground state.

Equation (5a) is, of course, the Hellman-Feynman theorem

dEe /dR =<- He/,) R>. Equation (5b) leads to the conclusion that
2 e2 2 2/,

d2Ee/dR < 0 e > H/ 2  for the ground state where the bracket

denotes the average value.
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A result similar to this can be obtained for an optimized para-fntn3 ..- &ra ..
meter wave function3 0 **l, 2 a1 ... aM) where the ai are

variational parameters and 9 has no explicit R dependence. If

i - (4, HO) / (0, ), then by an optimized wave function it is

meant that E/ a, - 0 for all i and R. But
M

dE/dR = (i R) + q7 (dai/dR)(-i/a i) (7a)
m Z

i-l

and d2- daE d(b)
d R 'a' ZRI) + dR L R )ai

i

it follows from equation (7a) and l Eia i M 0 that

2- -da da~2d ( b ) ' EZ-

7R Zd(d - (8)

i, j

Equation (7b) then becomes

d) 2 (9)

i, j

But the condition that E be a minimum with respect to all the ai

is precisely that the quadratic form

i,j
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be positive definite. Hence it follows that

d2!d < 22 al... am .

Thus for either an optimized approximate solution or an exact solution

there is an inequality of the form,

d2E /dR 2 < .2He/R2> (10)

If the expression from equation (3) is substituted 
for a2He R2

this inequality becomes d 2(R2 E e)/dR2 < 0, or in the case of the

exact energy d2(R2Ee)/dR 2= -2f(R). Another inequality is readily

obtained from the fact that T is positive. Hence the inequalitiese

d 2(R 2E)/dR2  d 2(R2F. e)/dR 2 < 0 (lla)

d (RE)/dR = d (RE )/dR < 0 (llb)e

E - z zb/R SE E < 0 (llc)ab e

must be satisfied by the ground state potential energy of every dia-

tomic molecule.

The first of these inequalities places a restriction on the force

constant of the form,

e2  -2E(re) (12)
e

Since the zero of energy is fixed by equation (1) at the energy of

the system when each electron and nucleus is isolated from all others,

this inequaliLy is much too weak to be useful. It is interesting to

note, however, that Sutherland4 has found a closely related quantity,

r e /D , to be approximately constant within the same class of
e e e

molecules. The second inequality merely restricts the slope dE/dR
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since it implies R dE/dR < - 9 .

The importance of the inequalities (11) lies in their implications

concerning the smoothness of E(R). Integ-ation of these inequalities

shows that RE, R 2Ee, and d(R 2E)/dR must all be monotonic decreasing

functions of R. Also, R 2E is monotonic increasing to a positive

maximum and monotonic decreasing beyond this maximum.

Repeated integration of inequality (lla) yields the inequality

R4 2 E(R4) - R3
2E(R3) R22E(R 2) - R12E(R1)

R4" R3 RR 2- for R4 R3 R2 R" (13a)

This should be a useful checking formula for an empirical potential

function if the four points are closely spaced. For R 3-R2 -R this

may be written as

1f R4 R [R11E(R 1 ) - R4 E(R 43J 1 R 2E(R I) " R4
2E(R 4 ) .(R)

R2  R4 - R, R (R--4" R1)

(13b)
for R4 >R R1

5 a -b
This states that a Fues potential 5 , R2 - , which is correct for

two values of R will be too low for intermediate values of R.
2 2 2Double integration of d (R E)/dR - -2f(R) yields

RI2 E(RI R2E(R) + (RI-R) [URE(R) + R2 dE(R)/dRj - (Rl-R)2f(f)

forR l > f  R (14)

Some properties of the function f(R) can be obtained from the limit-
2 2 2

ing values of d (R E)/dR . For instance,

lim d 2(R 2Ee)/dR 2 . 2E (@) =-2f(-o).
e
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Thus, f(ao) is the negative of the energy of the separated atoms.

Also,

lrm d 2(R 2 e)/dR2 = 2E e(0) - -2f(O).

So f(O) is the absolute value of the energy of the united atom. This
gives the interesting theorem,

.o 2 < a IVKaITa o>I 2

S "zo --E 0 .0 - o (15)a 11.0 a a E> a  a a
a a

where T aand V aare the kinetic and potential energy operator. for

an atom and the I za> are the energy eigenstates of that atom. It

also follows from this that

"a0 (Eal'Ea°)-. <ao V 2  a "a> - <a °oI VaIRao> 2  (16a)

and

-E 0 (Ea - a ) < <Ea0 ITa2I Ea0> - <Za0I Ta I Ba°> 2  (16b)

which gives a lower bound to the mean square deviation of T and

Va for an atom in its ground state.

It is clear from this that f(R) is rather large. In fact, for

the hydrogen molecule in Hartree atomic units,

f(O) - 2.904 , f(re) - 0.808 , f(eo) - 1

For other molecules f(R) can be expected to be even larger. Hence

the last term in equation (14) cannot be neglected unler (Rl-R)2

is small compared to (Rl-R).

If the inequality (Ila) is written in the form

2 " (RE) + R (R) < 0
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and equation (2b) is substituted, the inequality

d Tel dR/ > 2 Y/R

is obtained. Or in a different form,

dT 'R -- - 1  2 2 2d Te/dR- <dTe/dR> - -R d (R E)/dR > 0 (17a)

d V/dR - <dV/dR> - +R I d 2(R2E)/dR2 < 0 (17b)

Thus it is seen that dE/dR is obtained correctly from < dH/dR>

because dT/dR has been underestimated by the same amount that dy/dR

has been overestimated.

Since the derivation of the inequalities (11) holds equally

well for the lowest excited state of each symmetry it follows that

the inequalities (12), (13), (14) and (17) apply to the potential

curves for these states also. If, in equations (15) and (16), E a0

and 9 a are interpreted to mean the first two energy levels of a

given symmetry, equations (15) and (16) can also be applied to excited

states.

Conclusion

The inequality d 2(R 2E)/dR 2< 0 places certain rather weak

restrictions on the form of the potential curve for the ground state

of a diatomic molecule. These restrictions probably do not justify

the amount of smoothness usually assumed in constructing an approxi-

mate potential curve by empirical methods but they do imply that the

exact potential curve is not too badly behaved.
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